-
Featured services
Think beyond the robots
The successful integration of AI and IoT in manufacturing will depend on effective change management, upskilling and rethinking business models.
Read the blog -
Services
Leverage our capabilities to accelerate your business transformation.
-
Services
Network Services
Popular Products
-
Services
Cloud
Popular Products
-
Cloud Architecture and Modernization
Discover how to achieve your business goals through cloud modernization practices, that deliver improved agility, reusability and scalability.
-
Cloud Optimization
Discover how to maximize operational excellence, business continuity and financial sustainability through our cloud-advanced optimization services.
-
-
Services
Consulting
-
-
Services
Data and Artificial intelligence
-
Services
Technology Solutions
Client stories
-
Services
Global Data Centers
-
Services
CX and Design
-
Services
Application Services
-
Services
Sustainability Services
-
Services
Digital Workplace
-
Services
Business Process Services
Master your GenAI destiny
We’ll help you navigate the complexities and opportunities of GenAI.
Explore GenAI -
-
-
Insights
Recent Insights
-
The Future of Networking in 2025 and Beyond
-
Using the cloud to cut costs needs the right approach
When organizations focus on transformation, a move to the cloud can deliver cost savings – but they often need expert advice to help them along their journey
-
Make zero trust security work for your organization
Make zero trust security work for your organization across hybrid work environments.
-
-
Master your GenAI destiny
We’ll help you navigate the complexities and opportunities of GenAI.
Explore GenAI -
-
Master your GenAI destiny
We’ll help you navigate the complexities and opportunities of GenAI.
Explore GenAI -
Discover how we accelerate your business transformation
-
About us
CLIENT STORIES
-
Liantis
Over time, Liantis – an established HR company in Belgium – had built up data islands and isolated solutions as part of their legacy system.
-
Randstad
We ensured that Randstad’s migration to Genesys Cloud CX had no impact on availability, ensuring an exceptional user experience for clients and talent.
-
-
CLIENT STORIES
-
Liantis
Over time, Liantis – an established HR company in Belgium – had built up data islands and isolated solutions as part of their legacy system.
-
Randstad
We ensured that Randstad’s migration to Genesys Cloud CX had no impact on availability, ensuring an exceptional user experience for clients and talent.
-
-
Sponsorships
CLIENT STORIES
-
Liantis
Over time, Liantis – an established HR company in Belgium – had built up data islands and isolated solutions as part of their legacy system.
-
Randstad
We ensured that Randstad’s migration to Genesys Cloud CX had no impact on availability, ensuring an exceptional user experience for clients and talent.
-
Everest Group PEAK Matrix® Assessment
NTT DATA is a Leader and Star Performer in the Everest Group Sustainability Enablement Technology Services PEAK Matrix® Assessment 2024.
Get the Everest report -
- Careers
Such has been the impact of AI on data centers, that last year, Gartner predicted that by 2020, more than 30% of data centers that fail to implement AI and machine learning will cease to be operationally and economically viable. Google highlighted one of the first instances of the possible potential of AI in the data center, when it published research that it used AI to improve the power efficiency of its data center. In a span of just 18 months, Google used its AI-powered Google DeepMind system to bring about a 40% reduction in the amount of energy required for cooling, which is equivalent to a 15% reduction in overall PUE overheads. Since then, many organisations have followed suit to explore the transformational potential of AI.
If AI can be leveraged properly, it can lead to a huge number of benefits. Some of these include:
Handling workloads efficiently: AI can help organizations automate workload management in the most efficient way. With the use of AI and machine learning, patterns can be detected to learn from past data and distribute workloads across peak periods more efficiently. They can also be used to optimize disk utilization better, as well as server capacity and network bandwidth. This was demonstrated last year by a team of MIT researchers. An AI-based system developed by these researchers automatically ‘learned’ how to schedule data-processing operations across thousands of servers — a task traditionally reserved for imprecise, human-designed algorithms. The researchers said that by doing so, they could help today’s power-hungry data centers run far more efficiently. Compared to the best handwritten scheduling algorithms, the researchers’ system completes jobs about 20-30% faster, and twice as fast during high-traffic times. Additionally, the system learns how to compact workloads efficiently to leave little waste. The results indicate that the system could enable data centers to handle the same workload at higher speeds, using fewer resources.
Staffing: Hiring people with the right skillsets is a massive challenge in the digital era. Gartner, for instance, predicts that by 2020, 75% of organizations will experience visible business disruptions due to gaps in I&O skills (an increase from less than 20% in 2016). AI can play a big role in automating many of the tasks that human agents do today.Staffing: Hiring people with the right skillsets is a massive challenge in the digital era. Gartner, for instance, predicts that by 2020, 75% of organizations will experience visible business disruptions due to gaps in I&O skills (an increase from less than 20% in 2016). AI can play a big role in automating many of the tasks that human agents do today.
Energy efficiency: As seen from the example of Google, AI-based systems can play a huge role in better optimizing heating and cooling systems, which in turn can help in reducing electricity costs. AI can also be used to determine how organizations can best utilize resources, such as the most efficient time for performing certain type of tasks. AI can also be used to help in creating the design for a more efficient data center, and in detecting applications or servers that are rarely used. It can also be used to detect power hungry applications or servers, and recommend ways to move specific workloads to more efficient ones.
Security: AI can be used with great impact in a security operations center in a data center. AI can complement current security incidents and event management (SIEM) systems, by analyzing incidents and inputs from multiple systems, and devising an appropriate incident response system. AI-based systems can improve the security operations center monitoring and basic L1 jobs can be reduced. For example, when more than 20,000 events per second are logged, it becomes difficult for human beings to monitor these events. AI-based systems can help in identifying the malicious traffic from the false positives and help data center administrators handle cyber security threats more efficiently.
Proactive management of hardware: AI systems can help organizations in proactively managing the health of their IT infrastructure such as storage, servers or networking equipment. For example, by aggregating logs of different equipment, AI can unearth the root cause of failures and also proactively identify precursors of degradation of equipment. Anomalies, if any, can be reported to address the probable cause of failure, before the equipment fails.
If you look at the above benefits, it’s crystal clear that the future of data centers is definitely going to be more AI enabled, with huge potential for increased productivity gains and efficiencies.